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Figure 1

For the purposes of illustration, we represent in this figure a problem
with only two parameters : x (to be predicted) and x* (10 be observed, ).
a) the history of the region provides some experimental values of the
couple (x*, x2), each value defining a point in the parameter space.
Error bars are also shown. b) the smoothed density of experimental
points, O(x*, x*). ¢) a measurement of the present value of the para-
meter x* defines a density probability function on x*. d) the product
O(x', x*).p(x*) gives the a posteriori density of probability on the
parameter space, and the marginal probability density function

o(x') = | @(x', x*).p(x*).dx? gives the most general information

on the parameter to be predicted, x*.

can be used to obtain information on the parameters
to be predicted, X!, ..., X"

A measurement of the present values of the observable
parameters will include estimates of errors; or, more
generally, a probability density function :

p(xX 1, L, X" 3)

in the space of observable parameters.

It can be shown from very general arguments of inverse
problem theory (Tarantola and Valette, 1982) that
the most general information on the values of the
parameters to be predicted is given by the probability
density function :

o(x', .., xX)=k- f@(xl, s X, XL XM

PO LX) e dx P L
@

Figure 1 gives a schematical interpretation of this
formula.

Many different kinds of information may be extracted
from o(x!,..., %), as for example mean values (or
maximum likelihood values), standard deviations, and
so on. Nevertheless, for purposes of civil defense, we
believe that the most objective response that the scien-
tists can furnish to governmental authorities is in
terms of probability rather than in terms of estimators.
For example, if we are searching for a prediction of the
two parameters

where k is a normalizing factor.

X' : time to the next event
X2 : intensity of the event

®
the probability of having an event with intensity greater
than I, before the time t, is given by :

to o0
f dx! f dx? o(x!, x?). (6)
0 Yo

THE PREDICTIVE FORMULA

As stated in the previous section, we assume the existence
of a data set consisting in measures of the whole set
of parameters X' (i = 1, ..., n). This implies that the
measures have been done at different times before
the last event, and, if possible, for some events. If the
area under study has been monitored during a time
which is great compared to the time between recur-
rence of events, all the data will have been obtained
in the same area. If the monitoring has not been long
enough, the data will have been obtained in some
similar areas.

Assume that the data set consist of a list of values of the
parameters X*(/ = 1,..., n) measured at different times 7,
(@=1,..,N):

{xo 0, }s (7

where x!, are the observed values and o, the estimated
errors,

Although it is not necessary, we will assume for simplification, that each datum in (7) can conveniently be described
using Gaussian functions, and that the experimental errors are independent. Each datum defines then, in the para-

meter space, the probability density function

1

1 n i 2
ga(x) = ——._n_exp{ — 5 igl (x (—-0_,' )xf—u) } (8)

@n"* ] o
i=1
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which has been represented by an ellipsoid (of which the error bars of figure 1a are the major axis).
If the ellipsoids are overlapping enough, the mean :

1 N
O =5 3 6u®) ©
a=1
would be a smooth function representing all the correlations (if any) existing in the data set. If the sum is not smooth

because the data are too sparse, we can define @ (x) as the mean of (9) in a neighbourhood of x. Taking for example a
Gaussian window

1 11 (= x)?
st = ——e{ - § 5} o
@my* ] & =
i=1

where the &' are some « smoothing lengths », we can.define :

Ox) =k i JS(X, x) - 0,x)dx. (11
a=1

Using equations (8) and (10) we obtain then, dropping multiplicative constants :

{(al + &)} ,exp{ 1 G = } 12

N —
Ox) =k ) 25 (a2 + (6Y?

ot li=t (X — X' ¥ — xt
p(Ze 7 ) 4 o —
() + o

where @ is the error function :

R 1
D) = J exp {— = 12} - dr. 13)
2o 2
If the present values of measurable parameters are denoted :
{x,0h} i=r+1.,n (14)

the experimental errors being assumed to be independent, then using the Gaussian assumption we can define a density
function in the space of observable parameters :
1nzr xi _ xi 2
exp{—- Zg——-—ol-} @15

2.5 (oh)

p(xr+1’ B xn) = n—r
@ne 1 o

The computation of the induced probability density function in the space of unknowns, as defined by equation (4)

gives then
a.i2+ 6i2 -1/2 1 X xi_xiz
(O T O ) 'GXP{—EZ——“—”‘(H ;iz} (16)
1 (X — X X' — Xing =1 (0)" + (89
o ) R

n {(02)2 + (o.;;))z + (5i)2 }—1/2 . 1 " (xio B xi)Z }
exp{— 5 i=r+1 (0'(';)2 + (Gi())z + (51')2 . (17)

N
o(x!, ., x) =k Y o,
a=1 i

“:*

where

a)a - . N . .
i=r+1 _[x — xt Xy — X
') sup _ 0 + o 0 . inf
< o' ) o'

Let us recall here the definition of all the symbols appearing in equations (16) and (17) :

X Q<igp : Parameters to be predicted

X' (r 4+ 1 < i< n): Parameters on whose values the prediction is to be based

X (1<i<n) : Observed values in the past

o, (1<i<n) : Standard errors (18)
8 (1<i<gn : Smoothing lengths

xb  (r + 1 < i< n):Observed values at present

o (r + 1 < i< n):Standard errors.
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Figure 2
Tilt data in the Krafla area (from Tryggvasson, 1980). The instrument
is a water tube tiltmeter 70 m long. We see several periods of increasing
tilt (inflation of the magmatic chamber ) followed by sudden deflations
(corresponding to sudden injections of magma into the rift system).
Arrows show the 15 periods that we have arbitrarily defined and used
to define the points in the parameter space. For each day of each one
of the periods we have « measured » the Sfollowing parameters :
: Time to the next deflation event.

2 : Time elapsed from the last deflation event.

3 1 Tilt level.,
x* : Tilt rate.

5 . Tilt drop of the last deflation event.

>
R

R

THE KRAFLA DATA SET

In order to test our formulas with actual data we have
chosen the Krafla volcanic area in Iceland.

Figure 2 shows a record of a water tube tiltmeter
installed in the Krafla area (Tryggvasson, 1980). The
slowly increasing tilt corresponds to an influx of magna
into the Krafla reservoir, at an estimated rate of 5 m> /s
(Bjornsson et al., 1979). The inflow of magma, causes
increase of pressure in the reservoir, and when this
pressure attains a certain threshold, a sudden extrusion
of magma into the rift system occurs, producing a
sudden decrease of tilt.

These extrusions take the form of dykes, that may extend
some tens of km away from the Krafla zone (Einarsson,
(1979) and can, eventually, reach the surface, as a volcanic
eruption. In this example we are interested in the pre-
diction of the time of occurrence of a deflation event,
regardless of the magma reaching the surface or not.
We have identified 15 periods of inflation, followed by a
deflation event, as indicated on figure 2. Let us consider
a particular day of one of the periods of inflation, We
wish to make a prediction of the value of the parameter :

X' : Time to the next deflation event (TIMENEXT).
(19a)

By inspection of the figure, it seems that some para-
meters that may be relevant for the prediction (at a given
day) of the time of occurrence of the next deflation event
are :

X? : Time elapsed from last deflation event
(TIMELAST)

Tilt level (TILT)

Tilt rate (TILTRATE),

Tilt drop of last deflation event

(TILTDROP).

X3
X4
X5

(19b)
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As the measures of the water tube tiltmeter are normally
made daily, each day during the past 15 periods of
figure 2 can provide us with the values of these five
parameters. Each day then defines a point in the five-
dimensional space of parameters. To represent graphi-
cally these points in the parameter space, we have pro-
jected the points onto some coordinate planes, as shown
in figure 3. As the parameter X! (TIMENEXT) has
been chosen common for all the projections, a rapid
inspection of figures 3 gives a rough idea of the predic-
tive power of each parameter.

Let us make two remarks about these points

The first remark is that in at least 3 deflation events,
there has been an injection of dykes very close to the
tiltmeter site. In that case, the tilt drop reflects the combi-
nation of the deflation of the reservoir and the local
deformation at the tiltmeter site. To empirically correct
our data set for these effects, we have assumed that only
80 % of the observed tilt drop at the end of the third
period was deflation related. Similarly, we assume that
at the end of the fourth period only 50 % was deflation
related. On the contrary, we have assumed that the
deflation-related tilt drop for the event at the end of
the twelfth period, was about 200 % of the measured tilt
drop (the injection of the dyke was produced at the side
opposite to the tilt-site). These estimates are based on
observations not included in this present study.

The second remark is that the tilt rate has not been
defined as the actual slope of the curve of figure 2, which
is somewhat erratic, but as the slope of a least-squares
parabola fitting the tilt curve from the first day of the
period to the day of the measurement. Furthermore,
for the first 15 days of a period, even the slope of the
parabola is too erratic, and is not computed but it is
Just extrapolated from the 15th day to the first day of
each period. This procedure is questionable and can
certainly be changed, but for the present study, it serves
its purpose.

We estimate the experimental error on the measurement
of each parameter to be of the following order of magni-
tude.

6l x o2 x 1 day
62 ~ 0.01 mm

M for all o). 20
o* ~ 0.01 mm/day (oralle). — (20)
o2 ~ 0.0l mm

Although errors in the parameters X # and X 5 are clearly
not independent of errors in X 3, we will neglect these
correlations. In fact, we will see later that the smoothing
lengths are great compared with the errors (20) so not
only the correlations, but also the observational errors
could be neglected.

Figure 4 represents the marginal probability density
functions obtained from the function @(x) defined by
equation (9). Roughly speaking, this figure represents
the projections onto the coordinate lines of the experi-
mental points (or, more precisely, of the experimental
gaussian ellipsoids). If we accept that the curves shown
in that figure show a general trend and that the high
frequencies are mainly due to the sparsity of data, we can
apply the gaussian window defined in equation (10} in
order to smooth these curves. Using equation (12) we
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Graphic representation of the experimental points of the parameter space, by projection of the points onto some coordinate planes. The parameter to be
predicted (x* : Time to the next deflation event) is common to all projections, in order to graphically show the predictive power of each one of the para-

meters, taken alone.
a) TIMELAST-TIMENEXT.
b} TILT -TIMENEXT.

obtain then a probability density function @(x) whose
marginal densities are shown in figure 5. As all the mar-
ginal probability density functions of @(x) are smooth,
we can hope that the function @(x) is also smooth,
which would mean that the gaussian window used acts
as an interpolator of the experimental points.

In this example we have used the following values for
the smoothing lengths.

6% = 6% = 15 days

5% = 2mm @n
6% = 0.05 mm/day
8% = 6 mm.
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¢) TILTRATE-TIMENEXT.
d) TILTDROP-TIMENEXT.

It is not very obvious how to choose these values. The
larger these values are chosen, the more the smoothed
curves will be independent on eventual erratic data. This
means that the final prediction will be more robust.
But of course, the range of significant probability will
increase, i.., the final prediction will be less precise.
We see thus that there is a trade-off between robustness
and precision of the prediction.

The choice made in (21) corresponds to the smaller
values that make the curves in figure 5 look smooth.
This choice corresponds to the Aypothesis that if we had
more experimental points, the curves of figure 4 will
tend to resemble those of figure 5.
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Figure 4

The a priori marginal density functions before smoothing.

AN EXAMPLE OF PREDICTION

An adequate way for testing the applicability of the
method, is to completely suppress one of the periods
from the data set, and to try the prediction of the time
of occurrence of the following deflation event (TIME-
NEXT), using for all the days of the period the current
values of the parameters TIMELAST, TILT,
TILTRATE, and TILTDROP (which is constant for a
given period).

We have arbitrarily chosen to present here the results
for the prediction corresponding to the suppression of
the 7th period (the conclusions obtained using any
other period are similar).

Figures 6 through 10 show the prediction made 21, 42,
63, 84 and 105 days after the end of the previous deflation
event. We display both the density of probability and
the cumulated probability.

L
50 100 180 200 250 ~30 ~20 ~10 [] 10 20

TIMENBXT OR TIMELAST TILT
-0.2 0. 0.2 0.4 0.6 0.8 8 10 15 20 28
TILTRATE TILTDROP
Figure 5

The a priori marginal density functions after smoothing.

Let us start by the discussion of figure 6. As indicated at
the top of the figure, on the 6th day of August 1978,
21 days had elapsed from the last deflation event, the
tiltlevel was — 8.137 mm, the tilt rate was 0,121 mmy/day,
and the tilt drop in the last event was 12.122 mm (the
estimated errors are given by equation (20)). We will try
to answer the following question : when will the next
deflation event occur ? The results of figure 6 show that
the first answer to the question is that the deflation event
can occur any day between the present and the 225th
day from the present. We see that the density of proba-
bility is bimodal. We do not recommend the extraction of
estimators from the density of probability curve (as the
mean, the median, or the maximum likelihood points).
Instead we recommend the use of the cumulated proba-
bility curve. We believe that the most unambiguous and
objective prediction that could be done on August 6th,
was of the following type :

a) The probability of having a deflation event in the
following 30 days is less than 5 %,
b) There is a probability of 50 % of having a deflation
event before 94 days have elapsed.

¢) The probability of a deflation event within 180 days
is greater than 95 9,

The deflation event took place on November 10, 1978,
that is 96 days after August 6th.

Figures 7, 8, 9 and 10 show the evolution of the predic-
tion when the time elapses without occurrence of a
deflation event. In particular, figure 10 shows the pre-
diction as it could be done on October 29th, ie. 12 days
before the deflation event. We see that the probability
of having a deflation event within 30 days was about

50 %,

AUG 06 1978

TIMEBLAST: 21.000 TILT: ~8.437 TILTRATE: 0.121 TILTDROP: 12.122

Time Density of probability Cumulative probability

80

100

180

200

280

Figure 6
The prediction as could be done on August 6, 1978 (if all periods except
the current period were known).
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AUG 27 1978

TIMELAST: 42.000 TILT: -8.0068 TILTRATE: 0.143 TILTDROP: 12.122
Cumulative probability

100

Density of probability
0 1 0

Time

0

50

100

180

200

250

Figure 7
Same as figure 6,21 days later.

SEP 17 1978

TIMELAST: 63.000 TILT: —-2.044 TILTRATE: 0.122 TILTDROP: 12.122

Cumulative probability
100

Density of probability
0 1 0

Time

0

50

100

150

200

250

Figure 8
Same as figure 7, 21 days later.

REMARKS AND CONCLUSION

In all our runs of the Krafla data set with the above
described method, the prediction never contradicted
the actual date of the next deflation event. However,
the next event frequently occurred outside the period of
predicted maximum likelihood, and the non-zero proba-
bility extended over a disappointingly long period. We
have hoped for a better result but the data of figure 2
is apparently not sufficient for good prediction. Fur-
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OCT 08 1978

TIMELAST: 84.000 TILT: -0.088 TILTRATB: 0.098 TILTDROP: 12.122

Time Denasity of probability Cumulative probability

0 1
0 T
50
100

150

200

250

Figure 9
Same as figure 8, 21 days later.

OCT 29 1978

TIMELAST: 105.000 TILT: 1.587 TILTRATE: 0.058 TILTDROP: 12.122
Cumulative probability

100

Time Density of probability

0 1 0

50

100

200 p

250 E

Figure 10
Same as figure 9, 21 days later.

thermore, the treatment of the data, especially the
method used to calculate the tilt rate, may be improved
on. Also the division of the Krafla record into periods of
increasing tilt is questionable, as small subsidence events
areé sometimes included (early December, 1979; late
December, 1980), but only slightly smaller events are
ignored (early November, 1977; late June, 1980;
early October, 1980), and still smaller subsidence events
are recognized on the original tilt record. Therefore,
it is quite possible that better predictions can be made by
using the same method on the Krafla data set, if the data
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set is carefully structurized before application, espe-
cially the problem of which size subsidence events
should suffice in dividing the data set into periods of
inflation.

We recognize that several observed parameters, other
than those represented in figure 2, could possibly
improve the prediction of events in Krafla. These include
tilt observations at other localities, precise distance
measurements of a number of lines crossing the inflation
area, spatial and temporal distribution of micro-earth-
quake activity, gas composition in fumaroles width of
fissures, absolute ground elevations, gravity observa-
tions etc... (Tryggvason, 1980; Johnsen et al, 1980;
Einarsson, 1978 ; Méller and Ritter, 1980).

The smoothing lengths as defined in this paper, need not
be constant for each parameter, but may vary in the
n-dimensional space for best result. In particular, if we
use simultaneously small and large events to divide
the time series (fig. 2) into periods, we probably need
different values for the smoothing length in different
regions of the space.

The Krafla volcano has exibited quite regular activity
since 1975, and therefore serves well as an example for
testing the prediction method. However, any prediction
of a future event must be based on the dubious assump-
tion that the character of events does not change with
time. This assumption is certainly not true for Krafla,
as the past history of the volcano shows (Bjérnsson et al,,
1977 see note added in proof).
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